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Overview

 Project start date: 10/1/2016

 Project end date: 9/30/2019

 Percent Complete: 55% 

 Pacific Northwest National Laboratory

 National Renewable Energy Laboratory

 Accurately measuring the transportation 
system-wide energy impacts of 
connected and automated vehicles 
(CAVs),

 Computational difficulty of accurately  
simulating and optimizing large- scale 
network of signalized intersections,

 Implementation of traffic control 
algorithms in a mixed traffic environment 
of legacy and CAVs.

 Total project funding: 

 DOE Share: $310K for FY18 

 Contractor share: NA

 Fund received in FY17: $270K

 Fund for FY18: $310K

 ORNL Share: $200K

 PNNL Share: $110K

Budget

Partners

[Deliverable complete for Quarter 2 in FY18]

Timeline

Barriers
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Relevance/Objectives

• Overall objectives

– Investigate the  impact of traffic signal systems in an Automated, Connected, 
Electric, and/or Shared (ACES) environment focusing on mobility, energy, and 
productivity

– Develop robust and scalable signal control schemes leveraging data and 
connectivity with the goal—maximizing mobility with minimal energy

• Objectives for FY18

– To develop signal control algorithms to minimize energy consumption from urban 
signalized transportation networks,

– To understand the impact of the market share of CAVs on the performance of the 
developed algorithms through sensitivity analysis,

– To identify potential sensor technologies that enables the data and 
communication environment for real-world implementation.

• Impact

– Provide an assessment of the impact of signal control optimization in an ACES 
environment in terms of energy minimization, and mobility improvement

– Estimate the impact of CAV market-share on signal system performance
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Milestones and current status FY18

Timeline Milestone(s) Deliverable(s) Status

FY18Q1 Setting energy-based objectives in 

signal control schemes

No Deliverable NA

FY18Q2 Building the mathematical framework of 

control algorithms and base simulation

A report on stochastic control of 

traffic signal systems
Complete

FY18Q3 Implementation of stochastic control 

theory based signal scheme and initial 

results for a corridor

No Deliverable On Track

FY18Q4 Development of machine-learning based 

signal control with energy and mobility 

objectives

A paper with results from a real-world 

test network using VISSIM-traffic 

simulator tool—demonstration of 

energy minimization by signal control

On Track

(Obtained 

initial 

results)

FY19 Develop distributed control for a network 

of signalized intersections—scalability;

Develop fault-tolerant signal systems

Report on the demonstration of 

scalability for large networks
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Approach: Reinforcement Learning-Overview

• Signal control problem can be 
formulated as Markov-Decision-Process 
(MDP) and can be solved using 
reinforcement learning (RL)

• RL technique does not need prior 
information on transition probabilities—
no value function is needed

• Near optimal solution is possible

• RL can theoretically reach optimal 
solution as learning converges [1, 2] 

• Connected vehicle environment 
provides the data and feedback 
capability to execute RL-based signal 
control
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Environment: 

Traffic 

Simulator

Action:

Signal Phase 

Activation and 

Duration

Feedback through 

Reward Function:

Energy Consumption, 

Control Delay

RL Algorithm: Q-

Learning/SARSA

/RMART

Update Q-values 

(Learning)Exploration and 

Exploitation

[1] A. Gosavi, Simulation-Based Optimization: Parametric Optimization 

Techniques & Reinforcement Learning (2nd Edition). Springer, 2015.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An 

introduction (2nd Edition), vol. 1. Cambridge Univ Press, 2018.

[3] https://www.ptvgroup.com/en-us/solutions/products/ptv-vissim/

VISSIM  [3]
COM 

Interface
COM 

Interface

https://www.ptvgroup.com/en-us/solutions/products/ptv-vissim/


Approach: Reinforcement Learning-Data

CV environment facilitates communication platform between vehicles, vehicle to 
infrastructure and infrastructure components through vehicle-to-vehicle (V2V), V2I 
and I2I communication. The RL algorithm leverages V2I and I2I communications to 
ensure the information flow among the agents. Using V2I communication, vehicles 
continuously broadcast their status, such as speed, acceleration, position to an 
agent through BSM. Using the shared information from CVs, an agent determines 
the number of vehicles stopped in a queue based on their speed and acceleration.
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Collect BSM data

1. Vehicle ID

2. Speed

3. Acceleration

4. Position

Calculate measures

1. State of the 

System, 

2. Control delay,

3. Energy 

consumption

State, Rewards + Q-

values

RL-Signal control



Approach: Reinforcement Learning-Traffic State

 All the states in an intersection are presented  with different colors. For instance, 
states corresponding to North-Bound and South-Bound Traffic are represented 
by red and black arrows respectively,

 We considered both upstream and downstream queues to represent the state of 
an intersection,

 A clustering based technique is used to make the state-space finite for a 
tractable implementation.
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Approach: Reinforcement Learning-Energy Consumption
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[1] Jiménez-Palacios, J. L. Understanding and 

Quantifying Motor Vehicle Emissions with Vehicle 

Specific Power and TILDAS Remote Sensing. PhD 

dissertation. Massachusetts Institute of Technology, 

Cambridge, 1999.

[2] National Research Council. Assessment of fuel 

economy technologies for light-duty vehicles. National 

Academies Press, 2011.

[3] Sovran, G., & Blaser, D. (2006). Quantifying the 

potential impacts of regenerative braking on a 

vehicle's tractive-fuel consumption for the US, 

European, and Japanese driving schedules (No. 2006-

01-0664). SAE Technical Paper.

The power requirement, VSP values can be converted 
into fuel consumption with heat-content computation and 
brake-thermal, average drive train efficiency values [2, 3]

Energy consumption is computed based on Vehicle Specific Power 

(VSP) [1, 2]—The VSP equation differs for different powertrain such as 

electric and hybrid vehicles



Approach: Reinforcement Learning-Control Strategies
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Initialization: 
Iteration counter, 𝑘 = 0,

Initial Q-values, 𝑄 𝑠, 𝑎 ← 0,

Learning rate at iteration 𝑘, 𝛼𝑘 =
𝐴

𝐵+𝑘

Discount factor, 𝛾 = 0.8

Collect data from vehicles and find 

the current state, 𝒔 and 𝜶𝒌

Select random 
action, 𝒂

Observed reward, 𝒓 for an 
action 𝒂

Determine resulting state, 𝒔′

EndYes
Set 𝒌: = 𝒌 + 𝟏

𝒌 < 𝑵

Update the number of vehicles in 
each link for time step 𝒌 + 𝟏

Training?

No

Select 𝜺-greedy action, 
𝒂 from Q-Table

Select greedy 
action, 𝒂 from 

Q-Table

Update Q value:
𝑸 𝒔, 𝒂 ← 𝟏 − 𝜶 𝑸 𝒔, 𝒂 + 𝜶[𝒓 𝒔, 𝒂, 𝒔′ + 𝜸𝒎𝒂𝒙𝒃𝝐𝑨 𝒔′ 𝑸(𝒔

′, 𝒃)]

Evaluation 
and Testing

Exploration 
Exploitation

Yes No
Parameters Training Exploration-

exploitation
Testing

Number of
runs

400 50 33

Time per run 900s 900s 900s

Action-taking
interval

6s 6s 6s

Action taking
type

Random ε – greedy greedy 
method

Simulation setup for 

training and evaluation

Details can be found at:
SMA B. Al Islam, H. M. A. Aziz, H. Wang, and S. 

Young, “Minimizing energy consumption from 

connected signalized intersections by reinforcement 

learning” submitted to IEEE ITSC 2018 conference.



Approach: Reinforcement Learning-Network Calibration 
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• Test network from NG-SIM: 
Detailed vehicle trajectory 
data on Lankershim
Boulevard in the Universal 
City neighborhood of Los 
Angeles, CA

• Surface function based 
calibration approach

• Target metric: Trip travel 
time

Start

Sensitivity analysis for all 
controllable parameters in 

VISSIM

End

Run each sample for 
multiple (e.g., 3 or more) 

random seeds

* Iman, Ronald L. "Latin hypercube sampling." Encyclopedia of 

quantitative risk analysis and assessment (2008).

**Park, Byungkyu, and J. Schneeberger. "Microscopic 

simulation model calibration and validation: case study of 

VISSIM simulation model for a coordinated actuated signal 

system." Transportation Research Record: Journal of the 

Transportation Research Board 1856 (2003): 185-192.

Aerial view of Lankershim Blvd., CA



Approach: Stochastic Control
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 The model takes control inputs 

as the distribution of the signal 

settings—phase scheduling 

and duration

 Systems subjected to random 

input noises, where control 

should be performed for output 

probability density functions
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H. Wang, Bounded Dynamic Stochastic Distributions Modelling and 

Control, Springer-Verlag (London) Ltd, March, 2000. (ISBN 1-85233-187-

9, total page number: 176).

k(x, t): Density of the flow 

(vehicle/length),

W(x, t): Space mean speed 
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Approach: Stochastic Control
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Technical accomplishments  

[1] H. Wang, H. M. A. Aziz, S. Yang and S. Patil, ”Control of Networked Traffic Flow 
Distribution - A Stochastic Distribution System Perspective”, Proceedings of International 
Conference on IoT and Machine Learning, invited publication, Liverpool, October, 2017, 

[2] H. M. A. Aziz, “Learning-based Signal Control Algorithms in Connected And Automated 
Transportation”-Presented at 2017 INFORMS Annual Meeting, October 22-25, Houston, 
Texas, USA.

[3] T. Yang, Y. Wan, H. Wang and Z. Lin, Global Optimal Consensus for Discrete-time Multi-
agent Systems with Bounded Controls, Automatica, Accepted in May 2018.

[4] H. Wang, H. M. A. Aziz and S. Young, Non-Signalized Intersections Control – a 
Collaborative Fault Tolerant Control Perspective, ASCE International Conference on 
Transportation and Development, Podium Presentation, Pittsburgh, July, 2018,

[5] SMA B. Al Islam, H. M. A. Aziz, H. Wang, and S. Young, “Minimizing energy consumption 
from connected signalized intersections by reinforcement learning” submitted to IEEE ITSC 
2018 conference.
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Findings: RL Approach
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Analysis using RL approach 
revealed tradeoff between 
energy and delay.

• Energy minimization strategy 
yields 47% reduction in energy 
but at a 65.6% increase in 
system travel time 

• Delay minimization strategy 
yields 2% decrease in system 
travel time, but a 27% increase 
in energy

• Energy minimization with 
penalty for stops yields 6.7% 
reduction in energy with 27% 
increase in system travel time 

A balanced approach with 
desired energy minimization with 
acceptable delay is required and 
our developed technique with 
fine tuned training can achieve 
that.
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Total queue time

Average queue time

System travel time

Energy

Percentage Change from Base Case (Existing Signal 
control in NGSIM network) for Different Strategies

Strategy: Minimize Energy
with Penalty for Stops

Strategy: Minimize Energy

Strategy: Minimize Delay



Findings: RL Approach
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Performance 
Metric Estimate Base-Case Delay-Min

Energy-
min

Energy-
Stops 

Penalty

Completed 
trips*

Mean 911.12 918.09 488.09 849.73

Low-Bound 908.1 912.6 451.5 833.7

Up-Bound 914.2 923.6 524.7 865.8

Number of 
stops**

Mean 1171.48 1914.64 2332.64 2260.48

Low-Bound 1159.1 1877.2 2041.5 2147

Up-Bound 1183.87 1952.1 2623.8 2373.9

Total queue 
time** (s)

Mean 35885.6 29861.8 95772.9 54131.5

Low-Bound 35241.8 29146.3 89286.9 49060.1

Up-Bound 36529.3 30577.4 102259 59202.9

Average queue 
time**(s)

Mean 34.32 28.56 118.48 51.85

Low-Bound 33.7 27.9 108.2 46.9

Up-Bound 34.9 29.3 128.8 56.8

System travel 
time**(s)

Mean 75087.8 73558.9 124356 95392.9

Low-Bound 74391.4 72690.3 119117 90511.7

Up-Bound 75784.1 74427.4 129594 100274

Fuel/Energy-
consumption 
(gallons)

Mean 10.06 11.12 5.33 9.39

Low-Bound 9.9 11 4.9 9.2

Up-Bound 10.16 11.3 5.72 9.5

Results from 33 sample 

runs: mean and bounds 

are reported at 95% 

confidence interval

= Mean of the sample

= Standard deviation of the sample

= Mean of the population

= Sample size (= 33)

=

The range of values 

in the population is 

determined as follows:



On-going Tasks

• Sensitivity tests for energy-mobility trade-off reward functions

• Assessing impact of advanced technologies such as start-stop which shuts off 
the vehicle engine when idling at intersections.

• Assessing impact of traffic state-unobservability (e.g., How to estimate the traffic 
state when we have a mixed flow legacy and connected vehicles)
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Response to Previous Year Reviewers’ Comments 
(Only the critical comments are addressed)

Question 1: Approach to performing the work

Reviewer 5: “The reviewer stated that it also does not make sense to develop tools until after the majority of critical scenario
functions that need to be modeled by the tools is defined. The reviewer cautioned that the current approach schedule has 
significant risks because it lists tool development and scenario development as concurrent development tasks for FY 2018”

Response:  The models that we developed is in fact a framework that can accommodate critical scenarios where additional 
inputs/variables can be easily added under the proposed modelling framework

Reviewer 6: “The reviewer observed that the project did not address barriers or implementation challenges in the approach and

that the approach has the majority of the work biased to the end of the project. …………..The reviewer commented that the 

modeling activity has the potential to feed into other DOE models, but is not focused on that; the project needs more focus on 

DOE objectives and needs to start the work quickly in order to finish on time. The reviewer indicated that the project is currently 

behind schedule due to the approach.

Response: We have defined the barriers based on the suggestion from DOE program managers that reflects the vision of the 

EEMS program. In the first year of work, we set up goals of the project following our synthetic study report, a significant effort 

has been made in FY17 to define goals (i.e., smooth traffic with minimized energy usage) and control strategies such as 

Markov-based control and stochastic control. Our tasks are on track and we have completed all deliverables.

Question 4: Proposed Future Research

Reviewer 3: “The reviewer commented that a better project plan for the future research would be more useful and that a 

suggestion would be to identify key work packages and milestones to provide high-level visibility to the project activities”

Response: We had several discussion with the program managers and the steering committee members to get the key 

milestones. The latest quadchart for this project has details.
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Partners/Collaborators

• Pacific Northwest National Laboratory

– Hong Wang (Co-PI), Sagar Patil (Postdoc)

• National Renewable Energy Laboratory

– Stanley Young (PI for the Urban Science pillar and providing directions for the project 
goals and active tasks)

• Washington State University

– SMA Bin Al Islam—working as a graduate researcher
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Remaining challenges

• Execution in a simulation platform that can handle large scale network of 
signalized intersections,

• Development of a fault-tolerant systems,

• Identifying potential data-environment for execution of large-scale signal 
optimization.
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Proposed future research

Progress Timeline Milestone Deliverables Status

On-Going

FY18 Q3 Implementation of stochastic control 

theory based signal scheme and 

initial results for a corridor

No Deliverable On Track

FY18Q4

4th Quarter

Development of machine-learning 

based signal control with energy and 

mobility objectives

A paper with results from a 

real-world test network using 

VISSIM-traffic simulator tool

On Track

(Obtained 

initial 

results)

Proposed

FY19Q2 Large-scale implementation of 

distributed control algorithms

Report/Paper

FY18Q3 Fault-tolerant signal control Report/Paper

FY18Q4 Layout on real-world implementation 

considering data-sensor technologies in 

an ACES environment

Report

22

Any proposed future work is subject to change based on funding levels



Summary
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 Scalable distributed implementation for 
a network of signalized intersections

 Develop fault-tolerant control for signal 
systems

 Estimate the impact advanced 
powertrain on energy minimization at 
signalized intersections

Technical 
Accomplishments

 Developed Reinforcement learning based 
control and a paper is submitted to the IEEE 
ITSC conf. 2018

 Five scientific outputs 
(Journal/Conference) as of May 2018 (see 
slide 18)

 Machine learning based techniques:

- Reinforcement learning with multi-
reward functions

 Stochastic control theory, and multi-
objective optimization to integrate energy 
and mobility objectives

Approach (FY18)

Any proposed future work is subject to change based on funding levels

Relevance

Proposed future 
research

 Develop signal control algorithm in an 
ACES environment and demonstrate 
energy savings for real-world test network 
calibrated and simulated in a state-of-art 
traffic micro-sim tool—PTV VISSIM



Questions/Comments

This research is funded by the Energy Efficient Mobility 
Systems (EEMS) Program of the Vehicle Technologies 

Office, Department of Energy and ORNL appreciates the 
support and guidance provided by DOE program managers


